

treepathmap

Warning

The packages development (and its documentation) is in the alpha state.
It was segregated from another package as being a stand alone package.
Therefore major changes will during its further implementation into the
targeted projects.

Towards the beta (targeted release Q3/2021)

	naming of modules, classes and methods will change, since the final wording is not
done.

	Code inspections are not finished.

	The documentation is broad or incomplete.

	Testing is not complete, as it is added during the first test phase. At this

Introduction

of nested collections. A limited possibility of setting/replacing items within
the nested collection is also supported. This package was mainly developed for
tagging and grouping items within nested collections with mostly reading items
and replacing values at leaf level rather complete branches. For such tasks a
different package is redeveloped, from which this package origins.

With treepathmap items of nested collection can be

	selected by their paths using unix filename pattern or regular expressions,

	build relations by tagging items with key-value pairs,

	define a different view of the nested collection by using additional paths,

	set value of items within nested collections using selections of these,

	and direct interaction with the nested data.

[image: A map of a tree.]

Installation

Installing the latest release using pip is recommended.

$ pip install treepathmap

The latest development state can be obtained from gitlab using pip.

$ pip install git+https://gitlab.com/david.scheliga/treepathmap.git@dev

Contents:

	Basic Usage
	Important

	Examples
	Mapping of a tree

	Different views

	Selection of items

	Tagging

	Limitations

	concept of treepathmap

	API reference
	map_tree

	wh_is

	treepathmap.PathMap
	PathMap

	Properties

	Methods

	Related to real paths (indexes)

	Selecting

	Path map items

Basic Usage

	Important

	Examples

	Mapping of a tree

	Different views

	Selection of items

	Tagging

	Limitations

Important

Note

The path delimiters within the treepathmap.PathMap are defined
as an arrow ‘->’. This is intentional as the paths should not be mistaken
for system file paths.

Examples

A simple nested collection of Sequences and Mappings will be used for the
following examples. Within this example two features of treepathmap will
be shown. The additional paths which are like a different view onto the
mapped nested collection and meta attributes, which provide the possibility
to tag tree nodes for later selection purposes.

The meta attributes are a feature of treepathmap.TreeNodeItems.
Child tree node items inherit meta attributes from their parents.

>>> from treepathmap import map_tree, wh_is
>>> sample_tree = {
... "table": {
... "hint": "eat now",
... "basket": [
... {"fruit": "apple", "color": "red"},
... {"fruit": "apple", "color": "green"},
... {"fruit": "banana", "color": "yellow"},
...],
... },
... "shelf": [
... {"fruit": "apple", "color": "red"},
... {"fruit": "banana", "color": "yellow"},
... {"fruit": "banana", "color": "brown"},
...],
... }

Mapping of a tree

Either provide a completely defined treepathmap.TreeNodeItems or use
the default mapping method and customize the received tree node items of type
treepathmap.TreeNodeItem by an own method. In this example the items
‘color’ and ‘hint’ will be used as meta attributes of the item and an additional
path will list the current items by fruit types.

Hint

Meta attributes don’t need to origin from the collection.

>>> counters = {}
>>> from pandas import Series
>>> META_ATTRIBUTE_KEYS = ["color", "hint"]
>>> def get_meta_attributes(potential_collection):
... if not isinstance(potential_collection, dict):
... return None
... return {
... key: potential_collection[key]
... for key in META_ATTRIBUTE_KEYS
... if key in potential_collection
... }
...
>>> def add_path_and_meta_attributes(a_tree_node_item):
... global META_ATTRIBUTE_KEYS
... # Add meta attributes if exist
... original_item = a_tree_node_item.prime_value
... meta_attributes = get_meta_attributes(original_item)
... if meta_attributes is not None and meta_attributes:
... a_tree_node_item.add_meta_attributes(meta_attributes)
... if not isinstance(original_item, dict):
... return a_tree_node_item
... # Add a different view
... if "fruit" not in original_item:
... return a_tree_node_item
... fruit = original_item["fruit"]
... global counters
... if fruit not in counters:
... counters[fruit] = 0
...
... first_additional_path = 1
... path_parts = (fruit+"s", counters[fruit])
... a_tree_node_item.set_tree_path(first_additional_path, *path_parts)
... counters[fruit] += 1
... return a_tree_node_item
...

After the tree (nested collections) is mapped lets take a look on all tree nodes
(and leaves) within a table.

Note

The direct representation of the path map is more detailed, than the
str() representation invoked by print(), which resembles a table.

>>> mapped_tree = map_tree(
... sample_tree, modify_default_path_map_item=add_path_and_meta_attributes
...)
>>> print(mapped_tree)
 additional_path_1 meta_attributes
->table //hint/eat now//
->table->hint //hint/eat now//
->table->basket //hint/eat now//
->table->basket->0 ->apples->0 //color/red//hint/eat now//
->table->basket->0->fruit //color/red//hint/eat now//
->table->basket->0->color //color/red//hint/eat now//
->table->basket->1 ->apples->1 //color/green//hint/eat now//
->table->basket->1->fruit //color/green//hint/eat now//
->table->basket->1->color //color/green//hint/eat now//
->table->basket->2 ->bananas->0 //color/yellow//hint/eat now//
->table->basket->2->fruit //color/yellow//hint/eat now//
->table->basket->2->color //color/yellow//hint/eat now//
->shelf ////
->shelf->0 ->apples->2 //color/red//
->shelf->0->fruit //color/red//
->shelf->0->color //color/red//
->shelf->1 ->bananas->1 //color/yellow//
->shelf->1->fruit //color/yellow//
->shelf->1->color //color/yellow//
->shelf->2 ->bananas->2 //color/brown//
->shelf->2->fruit //color/brown//
->shelf->2->color //color/brown//

Different views

The added additional path can be used to specify a different view on the
collection than it is originally structured.

>>> other_view_map = mapped_tree["additional_path_1"]
>>> print(other_view_map)
 additional_path_1 meta_attributes
->table->basket->0 ->apples->0 //color/red//hint/eat now//
->table->basket->1 ->apples->1 //color/green//hint/eat now//
->table->basket->2 ->bananas->0 //color/yellow//hint/eat now//
->shelf->0 ->apples->2 //color/red//
->shelf->1 ->bananas->1 //color/yellow//
->shelf->2 ->bananas->2 //color/brown//

Selection of items

From any map selections can be done by either searching for parts of paths
using unix file pattern.

>>> apple_map = other_view_map.select("apples", "*")
>>> print(apple_map)
 additional_path_1 meta_attributes
->table->basket->0 ->apples->0 //color/red//hint/eat now//
->table->basket->1 ->apples->1 //color/green//hint/eat now//
->shelf->0 ->apples->2 //color/red//

>>> apple_map = other_view_map.select("apples", "[02]")
>>> print(apple_map)
 additional_path_1 meta_attributes
->table->basket->0 ->apples->0 //color/red//hint/eat now//
->shelf->0 ->apples->2 //color/red//

The meta attribute of the path map leads to the selection via the
meta attributes, which is invoked by the where method.

Note

The helper method wh_is (where is) combines both items to the correct
search pattern for a where <key> is <value> statement.

>>> yellow_fruits = mapped_tree.meta.where(wh_is("color", "yellow"))
>>> print(yellow_fruits)
 additional_path_1 meta_attributes
->table->basket->2 ->bananas->0 //color/yellow//hint/eat now//
->table->basket->2->fruit //color/yellow//hint/eat now//
->table->basket->2->color //color/yellow//hint/eat now//
->shelf->1 ->bananas->1 //color/yellow//
->shelf->1->fruit //color/yellow//
->shelf->1->color //color/yellow//

Since the prior view shows every tree node/leaf related to the where selection
the additional path view can reduce the selection additionally, making it
more human readable.

>>> yellow_fruits = mapped_tree[1].meta.where(wh_is("color", "yellow"))
>>> print(yellow_fruits)
 additional_path_1 meta_attributes
->table->basket->2 ->bananas->0 //color/yellow//hint/eat now//
->shelf->1 ->bananas->1 //color/yellow//

The where method used at the path map level requests arguments by groups of
two which are path part-value pairs. It searches for path with the path
part and selects them, if the have an equal value.

>>> apples = mapped_tree.where("fruit", "apple")
>>> print(apples)
 additional_path_1 meta_attributes
->table->basket->0->fruit //color/red//hint/eat now//
->table->basket->1->fruit //color/green//hint/eat now//
->shelf->0->fruit //color/red//

While the where method of tags (e.g. meta attributes) also allows single
statements. In the current version select is reserved for selection of tree
node paths in which the order of the arguments is taken into account. where
selections doesn’t need to provide any order or rather the order is ignored.

>>> red_apples = apples.meta.where("red")
>>> print(red_apples)
 additional_path_1 meta_attributes
->table->basket->0->fruit //color/red//hint/eat now//
->shelf->0->fruit //color/red//

Tagging

>>> fruits = mapped_tree["additional_path_1"]
>>> fruits.tags["tag_group"].tag({"foo": 1, "bar": "a"})
>>> print(fruits)
 additional_path_1 ... tag_group
->table->basket->0 ->apples->0 ... //bar/a//foo/1//
->table->basket->1 ->apples->1 ... //bar/a//foo/1//
->table->basket->2 ->bananas->0 ... //bar/a//foo/1//
->shelf->0 ->apples->2 ... //bar/a//foo/1//
->shelf->1 ->bananas->1 ... //bar/a//foo/1//
->shelf->2 ->bananas->2 ... //bar/a//foo/1//

[6 rows x 3 columns]

Limitations

>>> map_tree("Something not being a collection of Sequence or Mapping.")
Traceback (most recent call last):
TypeError: Expected a Sequence or Mapping, got '<class 'str'>' instead.

>>> map_tree({})
Traceback (most recent call last):
 MINIMUM_POSSIBLE_PATH_COUNT
ValueError: A path count lower than 1 is not supported.

>>> map_tree({"one": "item"})
->one

In the current scope treepathmap does not features tracking of added tree nodes
to the origin collection. It’s main purpose is to get selections and relations of
many nested entries.

In this example a smaller tree will be used.

>>> smaller_sample_tree = {
... "shelf": [
... {"fruit": "apple", "color": "red"},
... {"fruit": "banana", "color": "yellow"},
... {"fruit": "banana", "color": "brown"},
...],
... }
>>> smaller_sample_map = map_tree(
... smaller_sample_tree,
... modify_default_path_map_item=add_path_and_meta_attributes
...)
>>> fruits = smaller_sample_map[1]
>>> print(fruits)
 additional_path_1 meta_attributes
->shelf->0 ->apples->3 //color/red//
->shelf->1 ->bananas->3 //color/yellow//
->shelf->2 ->bananas->4 //color/brown//

By using the tree_items attribute of treepathmap.PathMap you get
access to the origin collections. Any changed here are reflected within the
origin, but not in the PathMap.

>>> yellow_fruits = smaller_sample_map[1].meta.where("color/yellow")
>>> print(yellow_fruits)
 additional_path_1 meta_attributes
->shelf->1 ->bananas->3 //color/yellow//
>>> for fruit in yellow_fruits.tree_items:
... fruit["eatable"] = True
>>> from doctestprinter import doctest_print
>>> doctest_print(smaller_sample_tree, max_line_width=70)
{'shelf': [{'fruit': 'apple', 'color': 'red'}, {'fruit': 'banana', 'color':
'yellow', 'eatable': True}, {'fruit': 'banana', 'color': 'brown'}]}
>>> print(yellow_fruits)
 additional_path_1 meta_attributes
->shelf->1 ->bananas->3 //color/yellow//

>>> fruits.tree_items[1:] = {"fruit": "banana", "color": "green", "eatable": False}
>>> fruits_reselected = fruits[1]
>>> print(fruits_reselected)
 additional_path_1 meta_attributes
->shelf->0 ->apples->3 //color/red//
->shelf->1 ->bananas->3 //color/yellow//
->shelf->2 ->bananas->4 //color/brown//

>>> doctest_print(smaller_sample_tree, max_line_width=70)
{'shelf': [{'fruit': 'apple', 'color': 'red'}, {'fruit': 'banana', 'color':
'green', 'eatable': False}, {'fruit': 'banana', 'color': 'green', 'eatable':
False}]}

Remapping is necessary if the origin changed severly.

>>> smaller_sample_map = map_tree(
... smaller_sample_tree,
... modify_default_path_map_item=add_path_and_meta_attributes
...)
>>> print(smaller_sample_map)
 additional_path_1 meta_attributes
->shelf ////
->shelf->0 ->apples->4 //color/red//
->shelf->0->fruit //color/red//
->shelf->0->color //color/red//
->shelf->1 ->bananas->5 //color/green//
->shelf->1->fruit //color/green//
->shelf->1->color //color/green//
->shelf->1->eatable //color/green//
->shelf->2 ->bananas->6 //color/green//
->shelf->2->fruit //color/green//
->shelf->2->color //color/green//
->shelf->2->eatable //color/green//

concept of treepathmap

The basic task of treepathmap is to create a map of nested collections
and support selection of items via the path (parts) or attached meta attributes.

nested_sample_data = {
 "shelf": [
 {"banana": {"color": "red", "weight": 123}},
 {"banana": {"color": "blue", "weight": 113}},
],
 "table": [
 {"apple": {"color": "green", "weight": 80}},
 {"banana": {"color": "green", "weight": 113}},
 {"apple": {"color": "red", "weight": 81}},
]
}

sample_map = a_map_method(nested_sample_data)

selection of items
bananas = sample_map.select("banana")

read access to of attributes
banana_weights = bananas.select("weight")
total_weight_of_all_bananas = numpy.sum(banana_weights.to_list())
print("Total weight of bananas: {}g".format(total_weight_of_all_bananas))

write access of attributes
bananas.tree_items["color"] = "yellow"

pretty_print(nested_sample_data)

Total weight of bananas 349g.
{
 'shelf': [
 {'banana': {'color': 'yellow', 'weight': 123}},
 {'banana': {'color': 'yellow', 'weight': 113}},
],
 'table': [
 {'apple': {'color': 'green', 'weight': 80}},
 {'banana': {'color': 'yellow', 'weight': 113}},
 {'apple': {'color': 'red', 'weight': 81}},
]
}

[image: @startmindmap * tree path map ** tree path map item *** tree paths **** real path *****_ index of the path map *****_ actual path within nested data *****_ contains all items **** additional paths *****_ multiple occurrence *****_ other depiction of nested data *****_ not necessary all items *** parent node container ****_ provides ~__getitem__() method ****_ contains item *** meta attributes ****_ attributes associated with item ** selection of items ***_ select by path ***_ select by meta attributes @endmindmap]

[image: A map of a tree.]The PathMapItem points at a specific item within a collection. It attributes
are

	
PathMapItem.parent_container -> Collection

	The parent collection of the item, the PathMapItem points to.

	
PathMapItem.real_key -> Hashable

	The index of a Sequence or hashable key of a Mapping of the item this PathMapItem
points to.

	
PathMapItem.prime_value : Any

	This is the value of the item

	
PathMapItem.real_path : str

	The sequence of indexes and keys pointing at the item’s location within the nested
root collection as a path-like string.

	
PathMapItem.meta_attributes

	Attributes associated with the item.

[image: @startuml class PathMapItem { path_count + parent_container : Collection + real_key : Hashable + prime_value : Any + meta_attributes : dict + real_path : str } @enduml]

[image: A map of a tree.]

API reference

	treepathmap.map_tree(potential_tree[, …])

	Maps a nested collection to a PathMap.

	treepathmap.wh_is(attribute_name, value)

	Makes a ‘where is’ search pattern.

Contents:

	treepathmap.PathMap
	PathMap

	Properties
	meta

	tags

	real_paths

	selection_path_name

	tree_node_items

	tree_items

	Methods
	is_empty

	from_selection

	Related to real paths (indexes)
	get_sub_paths_of_real_path

	real_path_exists

	get_indexes

	selected_indexes

	Selecting
	select

	where

	Path map items
	get_path_map_item_by_real_path

	iter_rows

map_tree

	
treepathmap.map_tree(potential_tree: Union[Sequence, Mapping], parent_path_map_item: Optional[treepathmap.selectables.TreeNodeItem] = None, item_is_a_leaf: Optional[Callable[[Any], bool]] = None, modify_default_path_map_item: Optional[Callable[[treepathmap.selectables.TreeNodeItem], treepathmap.selectables.TreeNodeItem]] = None) → treepathmap.maps.PathMap

	Maps a nested collection to a PathMap.

	Parameters

	
	potential_tree – The potential nested tree to be mapped.

	parent_path_map_item (Optional[TreeNodeItem]) – The path map item of the parent container, the potential tree is
located in. The default option None means the potential tree
is the root container.

	item_is_a_leaf (Optional[DetectATreeLeaf]) – The custom Callable item_is_a_leaf defines if an item is a leaf
or a node. By default treenodedefinition.this_item_is_a_leaf is
used.

	modify_default_path_map_item (Optional[Callable[[TreeNodeItem], TreeNodeItem]]) – Defines a Callable, which enables an additional declaration of
tree paths and meta potential_tree of the default real path TreeNodeItem
directly after its creation.

	Raises

	TypeError – if tree_item_to_map is not a Sequence or Mapping.

	Returns

	PathMap

Examples

>>> from treepathmap.maps import map_tree
>>> sample_tree = {"1st": [["a set", "of"], ["items"]]}
>>> sample_map = map_tree(sample_tree)
>>> print(sample_map)
 meta_attributes
->1st ////
->1st->0 ////
->1st->1 ////
>>> def add_path_and_meta_attributes(a_path_map_item):
... a_path_map_item.add_meta_attributes({"some": "metadata"})
... # don't give this additional path example to much credit.
... a_nonsense_path = 0
... the_value_of_this_item = a_path_map_item.prime_value
... for char in str(the_value_of_this_item):
... a_nonsense_path += ord(char)
... # the additional path is set to location 1, first place after
... # the real path generated by the default mapping method.
... a_path_map_item.set_tree_path(1, a_nonsense_path)
... return a_path_map_item
...
>>> extended_path_map_items = map_tree_items(
... sample_tree,
... modify_default_path_map_item=add_path_and_meta_attributes
...)
...
>>> extended_path_map_items.print_full_items()
TreePath:
 path-0: ->1st
 path-1: ->2158
 metadata: {'some': 'metadata'}
 parent container type: dict
TreePath:
 path-0: ->1st->0
 path-1: ->1090
 metadata: {'some': 'metadata'}
 parent container type: list
TreePath:
 path-0: ->1st->1
 path-1: ->808
 metadata: {'some': 'metadata'}
 parent container type: list

wh_is

	
treepathmap.wh_is(attribute_name: str, value: Union[int, str]) → str

	Makes a ‘where is’ search pattern. Using this method ensures the
correct key-value delimiter within the search pattern.

	Parameters

	
	attribute_name (str) – The attribute of which the value is choosen.

	value (Union[int, str]) – The value of the attribute to choose.

	Returns

	str

Examples

>>> from treepathmap import wh_is
>>> wh_is("a", "b")
'a/b'

treepathmap.PathMap

	treepathmap.PathMap(path_map_table, …)

	A map of a nested collection.

Properties

	treepathmap.PathMap.meta

	

	treepathmap.PathMap.tags

	

	treepathmap.PathMap.real_paths

	

	treepathmap.PathMap.selection_path_name

	States the current name of the paths from which the item selection via select is performed.

	treepathmap.PathMap.tree_node_items

	

	treepathmap.PathMap.tree_items

	

Methods

	treepathmap.PathMap.is_empty()

	

	treepathmap.PathMap.from_selection([…])

	

Related to real paths (indexes)

	treepathmap.PathMap.get_sub_paths_of_real_path(…)

	

	treepathmap.PathMap.real_path_exists(real_path)

	

	treepathmap.PathMap.get_indexes()

	

	treepathmap.PathMap.selected_indexes

	

Selecting

	treepathmap.PathMap.select(*search_parts)

	Selects tree items on base of the supplied w*search_parts*, which are parts of the augmented_paths within the tree.

	treepathmap.PathMap.where(*where_search_parts)

	
	param *search_parts

	Tree path parts which are parts of the requested tree items

Path map items

	treepathmap.PathMap.get_path_map_item_by_real_path(…)

	Retrieves the tree node item of a requested real path.

	treepathmap.PathMap.iter_rows()

	

PathMap

	
class treepathmap.PathMap(path_map_table: Optional[treepathmap.maps.PathMapTable] = None, selected_real_paths: Optional[pandas.core.indexes.base.Index] = None, selection_path_name: Optional[str] = None, path_mapping_behavior: Optional[treepathmap.maps.APathMappingBehavior] = None)

	A map of a nested collection.

	Parameters

	
	path_map_table (Optional[PathMapTable]) – The table of all real paths and path map items, which is the
basis of each path map.

	selected_real_paths (Optional[pandas.Index]) – The selected real paths (indexes) of this instance.

	selection_path_name (Optional[str]) – The name of the paths (real or additional paths) this path map
points to.

	path_mapping_behavior (Optional[APathMappingBehavior]) – The mapping behavior of this path map, by which new items
are mapped.

Examples

In this example the map is build from scratch instead using
treepathmap.map_tree(), which is the recommend way.

>>> from treepathmap import (
... TreeNodePaths,
... TreeNodeItem,
... TreeNodeItems,
... PathMapTable
...)

The nested sample collection is kept simple.

>>> sample_tree = {"a": {"b": {"d": "leaf-1"}, "c": {"e": "leaf-2"}}}

The tree node paths are pointing at items of the collection.
Meta attributes are inherited, what is taken into account here.

>>> tree_node_paths = [
... TreeNodePaths([["a"], ["x"]], {"k1": 1}),
... TreeNodePaths([["a", "b"], [""]], {"k1": 2, "k2": "n"}),
... TreeNodePaths([["a", "b", "d"], ["y"]], {"k1": 2, "k2": "m"}),
... TreeNodePaths([["a", "c"], [""]], {"k1": 3, "k2": "n"}),
... TreeNodePaths([["a", "c", "e"], ["y"]], {"k1": 3, "k2": "m"})
...]

The prior block is identical to the following one, which shows the
joining method of TreeNodePaths.

>>> a_root_path = TreeNodePaths([RootNodePath()])
>>> path_1 = a_root_path.join([["a"], ["x"]], {"k1": 1})
>>> path_11 = path_1.join([["b"], [""]], {"k1": 2, "k2": "n"})
>>> path_111 = path_11.join([["d"], ["y"]], {"k2": "m"})
>>> path_21 = path_1.join([["c"], [""]], {"k1": 3, "k2": "n"})
>>> path_211 = path_21.join([["e"], ["y"]], {"k2": "m"})
>>> tree_node_paths = [path_1, path_11, path_111, path_21, path_211]

The tree node items resembles the core of the PathMapTable, which is
the basis of the final PathMap. Using treepathmap.map_tree() is
the recommended way to get a PathMap.

>>> sample_node_items = TreeNodeItems(
... TreeNodeItem(tree_node_paths[0], sample_tree),
... TreeNodeItem(tree_node_paths[1], sample_tree["a"]),
... TreeNodeItem(tree_node_paths[2], sample_tree["a"]["b"]),
... TreeNodeItem(tree_node_paths[3], sample_tree["a"]),
... TreeNodeItem(tree_node_paths[4], sample_tree["a"]["c"]),
...)
...
>>> sample_table = PathMapTable(tree_node_items=sample_node_items)
>>> sample_map = PathMap(sample_table)
>>> print(sample_map)
 additional_path_1 meta_attributes
->a ->x //k1/1//
->a->b //k1/2//k2/n//
->a->b->d ->y //k1/2//k2/m//
->a->c //k1/3//k2/n//
->a->c->e ->y //k1/3//k2/m//

The choosen path column defines the active tree nodes. The default
column are the real paths. In this example the additional paths
has one blank path, which is removed from the view.

>>> sample_map = PathMap(sample_table)
>>> sample_map.real_paths
Index(['->a', '->a->b', '->a->b->d', '->a->c', '->a->c->e'], dtype='object')
>>> other_view = sample_map[1]
>>> other_view.real_paths
Index(['->a', '->a->b->d', '->a->c->e'], dtype='object')

The choosen paths define the selection and iteration behavior of
the path map. In the following case the paths ‘->a->b’ and ‘->a->c’
are omitted, due to a blank path in the additional paths.

>>> rows = {
... real_path: row.to_list()
... for real_path, row in other_view.iter_rows()
... }
...
>>> from dicthandling import print_tree
>>> print_tree(rows)
->a: ['->a', '->x']
->a->b->d: ['->a->b->d', '->y']
->a->c->e: ['->a->c->e', '->y']
>>> selected_map = other_view.select("y")
>>> print(selected_map)
 additional_path_1 meta_attributes
->a->b->d ->y //k1/2//k2/m//
->a->c->e ->y //k1/3//k2/m//

Since the additional paths are active only ‘->a->c->e’ should be
selected using the where statement, although ‘->a->c’ also is tagged
with {k1: 3}.

>>> reduced_map = selected_map.meta.where(wh_is("k1", "3"))
>>> print(reduced_map)
 additional_path_1 meta_attributes
->a->c->e ->y //k1/3//k2/m//
>>> reduced_map.select("->a->b->d")
<empty map>
>>> reduced_map.real_path_exists("->not->existing")
False
>>> reduced_map.real_path_exists("->a->b")
False
>>> reduced_map.real_path_exists("->a->c->e")
True

>>> for item in reduced_map.tree_node_items:
... print(item)
TreeNodeItem(->a->c->e: in a dict)

>>> list(reduced_map.tree_items)
['leaf-2']

The reduced map is switched back to the real paths. Selections from the
reduced map should not exceed the current selection.

>>> reduced_map = reduced_map["real_path"]
>>> reduced_map.selected_indexes
Index(['->a->c->e'], dtype='object')
>>> reduced_map.select("a", "*")
->a->c->e
 additional_path_1: ->y
 meta attributes: {'k1': 3, 'k2': 'm'}

By default the first tag group are the meta_attributes, which are an instance
of treepathmap.IrregularTags. The tags attribute of the path map
gives access to all tag groups. In this example all items with the
meta attributes k2 being m are selected. The new tag group ‘ids’
is assigned, which can be selected by this tags from the whole map afterwards.

>>> items_with_k2_is_m = sample_map.tags["meta_attributes"].where("k2/m")
>>> items_with_k2_is_m.tags["ids"].tag({"category": "foo", "name": "bar"})
>>> items_with_k2_is_m.tags["ids"]
 category name ids
->a->b->d foo bar //category/foo//name/bar//
->a->c->e foo bar //category/foo//name/bar//
>>> sample_map.tags["ids"].where("category/foo")
->a->b->d
 additional_path_1: ->y
 meta attributes: {'k1': 2, 'k2': 'm'}
->a->c->e
 additional_path_1: ->y
 meta attributes: {'k1': 3, 'k2': 'm'}

meta

	
PathMap.meta

	

tags

	
PathMap.tags

	

real_paths

	
PathMap.real_paths

	

selection_path_name

	
PathMap.selection_path_name

	States the current name of the paths from which the item selection
via select is performed.

	Returns

	str

tree_node_items

	
PathMap.tree_node_items

	

tree_items

	
PathMap.tree_items

	

is_empty

	
treepathmap.PathMap.is_empty(self)

	

from_selection

	
treepathmap.PathMap.from_selection(self, selected_real_paths: Optional[pandas.core.indexes.base.Index] = None, selection_path_name: Optional[str] = None)

	

get_sub_paths_of_real_path

	
treepathmap.PathMap.get_sub_paths_of_real_path(self, parent_real_path: str) → List[str]

	

real_path_exists

	
treepathmap.PathMap.real_path_exists(self, real_path: str) → bool

	

get_indexes

	
treepathmap.PathMap.get_indexes(self) → pandas.core.indexes.base.Index

	

selected_indexes

	
PathMap.selected_indexes

	

select

	
treepathmap.PathMap.select(self, *search_parts) → treepathmap.maps.PathMap

	Selects tree items on base of the supplied w*search_parts*, which are
parts of the augmented_paths within the tree. All parts are
considered with an and condition in between them. Multiple parts
within a part are considered with an or condition in between.

Examples

select(“this”, “and_that”, [“this”, “or_this”, “or_that”])

	Parameters

	*search_parts – Tree path parts which are parts of the requested tree items
paths.

	Returns

	Selection of augmented tree items.

	Return type

	PathMapSelection

where

	
treepathmap.PathMap.where(self, *where_search_parts) → treepathmap.maps.PathMap

	
	Parameters

	*search_parts – Tree path parts which are parts of the requested tree items
paths.

	Returns

	Selection of augmented tree items.

	Return type

	PathMapSelection

get_path_map_item_by_real_path

	
treepathmap.PathMap.get_path_map_item_by_real_path(self, real_path: str) → treepathmap.selectables.TreeNodeItem

	Retrieves the tree node item of a requested real path.

	Parameters

	real_path (str) – real path of the requested tree item.

	Returns

	TreeNodeItem

iter_rows

	
treepathmap.PathMap.iter_rows(self) → Generator[Tuple[str, pandas.core.series.Series], None, None]

	

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 treepathmap	

Index

 F
 | G
 | I
 | M
 | P
 | R
 | S
 | T
 | W

F

 	
 	from_selection() (in module treepathmap.PathMap)

G

 	
 	get_indexes() (in module treepathmap.PathMap)

 	
 	get_path_map_item_by_real_path() (in module treepathmap.PathMap)

 	get_sub_paths_of_real_path() (in module treepathmap.PathMap)

I

 	
 	is_empty() (in module treepathmap.PathMap)

 	
 	iter_rows() (in module treepathmap.PathMap)

M

 	
 	map_tree() (in module treepathmap)

 	meta (treepathmap.PathMap attribute)

 	
 	meta_attributes (treepathmap.PathMapItem attribute)

 	
 module

 	treepathmap

P

 	
 	PathMap (class in treepathmap)

R

 	
 	real_path_exists() (in module treepathmap.PathMap)

 	
 	real_paths (treepathmap.PathMap attribute)

S

 	
 	select() (in module treepathmap.PathMap)

 	
 	selected_indexes (treepathmap.PathMap attribute)

 	selection_path_name (treepathmap.PathMap attribute)

T

 	
 	tags (treepathmap.PathMap attribute)

 	tree_items (treepathmap.PathMap attribute)

 	
 	tree_node_items (treepathmap.PathMap attribute)

 	
 treepathmap

 	module

W

 	
 	wh_is() (in module treepathmap)

 	
 	where() (in module treepathmap.PathMap)

 _plantuml/2e/2ee1101aa0d87ced35af15f8ac1886a88ac4557b.png
index of the path map
actual path within nested data
contains all items

multiple occurrence

other depiction of nested data
not necessary all items

real path

tree paths
additional paths

tree path map item

provides __getitem_() method

parent node container
contains item

tree path map

meta attributes attributes associated with item

select by path

selection of tems select by meta attributes

_plantuml/e3/e364b8fe4803987cd20d74265c52902846fa80e6.png
© PathMapltem

path_count
© parent_container : Collection
© real_key : Hashable
© prire_vaiue : Any
© meta attributes : dict
o real_path : str

_static/plus.png

_static/file.png

_static/minus.png

_images/plantuml-2ee1101aa0d87ced35af15f8ac1886a88ac4557b.png
index of the path map
actual path within nested data
contains all items

multiple occurrence

other depiction of nested data
not necessary all items

real path

tree paths
additional paths

tree path map item

provides __getitem_() method

parent node container
contains item

tree path map

meta attributes attributes associated with item

select by path

selection of tems select by meta attributes

_images/plantuml-e364b8fe4803987cd20d74265c52902846fa80e6.png
© PathMapltem

path_count
© parent_container : Collection
© real_key : Hashable
© prire_vaiue : Any
© meta attributes : dict
o real_path : str

nav.xhtml

 Table of Contents

 		
 treepathmap

 		
 Basic Usage

 		
 Important

 		
 Examples

 		
 Mapping of a tree

 		
 Different views

 		
 Selection of items

 		
 Tagging

 		
 Limitations

 		
 concept of treepathmap

 		
 API reference

 		
 map_tree

 		
 wh_is

 		
 treepathmap.PathMap

 		
 PathMap

 		
 Properties

 		
 Methods

 		
 Related to real paths (indexes)

 		
 Selecting

 		
 Path map items

