
treepathmap
Release release = "0.2a2"

David Scheliga

Mar 20, 2021

CONTENTS:

1 Introduction 3

2 Installation 5
2.1 Basic Usage . 5

2.1.1 Important . 5
2.1.2 Examples . 6
2.1.3 Tagging . 9
2.1.4 Limitations . 9

2.2 concept of treepathmap . 11
2.3 API reference . 13

2.3.1 map_tree . 13
2.3.2 wh_is . 14
2.3.3 treepathmap.PathMap . 15

Python Module Index 23

Index 25

i

ii

treepathmap, Release release = "0.2a2"

Warning: The packages development (and its documentation) is in the alpha state. It was segregated from
another package as being a stand alone package. Therefore major changes will during its further implementation
into the targeted projects.

Towards the beta (targeted release Q3/2021)

• naming of modules, classes and methods will change, since the final wording is not done.

• Code inspections are not finished.

• The documentation is broad or incomplete.

• Testing is not complete, as it is added during the first test phase. At this

CONTENTS: 1

treepathmap, Release release = "0.2a2"

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

of nested collections. A limited possibility of setting/replacing items within the nested collection is also supported.
This package was mainly developed for tagging and grouping items within nested collections with mostly reading
items and replacing values at leaf level rather complete branches. For such tasks a different package is redeveloped,
from which this package origins.

With treepathmap items of nested collection can be

• selected by their paths using unix filename pattern or regular expressions,

• build relations by tagging items with key-value pairs,

• define a different view of the nested collection by using additional paths,

• set value of items within nested collections using selections of these,

• and direct interaction with the nested data.

3

treepathmap, Release release = "0.2a2"

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

Installing the latest release using pip is recommended.

$ pip install treepathmap

The latest development state can be obtained from gitlab using pip.

$ pip install git+https://gitlab.com/david.scheliga/treepathmap.git@dev

2.1 Basic Usage

• Important

• Examples

– Mapping of a tree

– Different views

– Selection of items

• Tagging

• Limitations

2.1.1 Important

Note: The path delimiters within the treepathmap.PathMap are defined as an arrow ‘->’. This is intentional as
the paths should not be mistaken for system file paths.

5

treepathmap, Release release = "0.2a2"

2.1.2 Examples

A simple nested collection of Sequences and Mappings will be used for the following examples. Within this example
two features of treepathmap will be shown. The additional paths which are like a different view onto the mapped
nested collection and meta attributes, which provide the possibility to tag tree nodes for later selection purposes.

The meta attributes are a feature of treepathmap.TreeNodeItems. Child tree node items inherit meta at-
tributes from their parents.

>>> from treepathmap import map_tree, wh_is
>>> sample_tree = {
... "table": {
... "hint": "eat now",
... "basket": [
... {"fruit": "apple", "color": "red"},
... {"fruit": "apple", "color": "green"},
... {"fruit": "banana", "color": "yellow"},
...],
... },
... "shelf": [
... {"fruit": "apple", "color": "red"},
... {"fruit": "banana", "color": "yellow"},
... {"fruit": "banana", "color": "brown"},
...],
... }

Mapping of a tree

Either provide a completely defined treepathmap.TreeNodeItems or use the default mapping method and
customize the received tree node items of type treepathmap.TreeNodeItem by an own method. In this example
the items ‘color’ and ‘hint’ will be used as meta attributes of the item and an additional path will list the current items
by fruit types.

Hint: Meta attributes don’t need to origin from the collection.

>>> counters = {}
>>> from pandas import Series
>>> META_ATTRIBUTE_KEYS = ["color", "hint"]
>>> def get_meta_attributes(potential_collection):
... if not isinstance(potential_collection, dict):
... return None
... return {
... key: potential_collection[key]
... for key in META_ATTRIBUTE_KEYS
... if key in potential_collection
... }
...
>>> def add_path_and_meta_attributes(a_tree_node_item):
... global META_ATTRIBUTE_KEYS
... # Add meta attributes if exist
... original_item = a_tree_node_item.prime_value
... meta_attributes = get_meta_attributes(original_item)
... if meta_attributes is not None and meta_attributes:
... a_tree_node_item.add_meta_attributes(meta_attributes)

(continues on next page)

6 Chapter 2. Installation

treepathmap, Release release = "0.2a2"

(continued from previous page)

... if not isinstance(original_item, dict):

... return a_tree_node_item

... # Add a different view

... if "fruit" not in original_item:

... return a_tree_node_item

... fruit = original_item["fruit"]

... global counters

... if fruit not in counters:

... counters[fruit] = 0

...

... first_additional_path = 1

... path_parts = (fruit+"s", counters[fruit])

... a_tree_node_item.set_tree_path(first_additional_path, *path_parts)

... counters[fruit] += 1

... return a_tree_node_item

...

After the tree (nested collections) is mapped lets take a look on all tree nodes (and leaves) within a table.

Note: The direct representation of the path map is more detailed, than the str() representation invoked by print(),
which resembles a table.

>>> mapped_tree = map_tree(
... sample_tree, modify_default_path_map_item=add_path_and_meta_attributes
...)
>>> print(mapped_tree)

additional_path_1 meta_attributes
->table //hint/eat now//
->table->hint //hint/eat now//
->table->basket //hint/eat now//
->table->basket->0 ->apples->0 //color/red//hint/eat now//
->table->basket->0->fruit //color/red//hint/eat now//
->table->basket->0->color //color/red//hint/eat now//
->table->basket->1 ->apples->1 //color/green//hint/eat now//
->table->basket->1->fruit //color/green//hint/eat now//
->table->basket->1->color //color/green//hint/eat now//
->table->basket->2 ->bananas->0 //color/yellow//hint/eat now//
->table->basket->2->fruit //color/yellow//hint/eat now//
->table->basket->2->color //color/yellow//hint/eat now//
->shelf ////
->shelf->0 ->apples->2 //color/red//
->shelf->0->fruit //color/red//
->shelf->0->color //color/red//
->shelf->1 ->bananas->1 //color/yellow//
->shelf->1->fruit //color/yellow//
->shelf->1->color //color/yellow//
->shelf->2 ->bananas->2 //color/brown//
->shelf->2->fruit //color/brown//
->shelf->2->color //color/brown//

2.1. Basic Usage 7

treepathmap, Release release = "0.2a2"

Different views

The added additional path can be used to specify a different view on the collection than it is originally structured.

>>> other_view_map = mapped_tree["additional_path_1"]
>>> print(other_view_map)

additional_path_1 meta_attributes
->table->basket->0 ->apples->0 //color/red//hint/eat now//
->table->basket->1 ->apples->1 //color/green//hint/eat now//
->table->basket->2 ->bananas->0 //color/yellow//hint/eat now//
->shelf->0 ->apples->2 //color/red//
->shelf->1 ->bananas->1 //color/yellow//
->shelf->2 ->bananas->2 //color/brown//

Selection of items

From any map selections can be done by either searching for parts of paths using unix file pattern.

>>> apple_map = other_view_map.select("apples", "*")
>>> print(apple_map)

additional_path_1 meta_attributes
->table->basket->0 ->apples->0 //color/red//hint/eat now//
->table->basket->1 ->apples->1 //color/green//hint/eat now//
->shelf->0 ->apples->2 //color/red//

>>> apple_map = other_view_map.select("apples", "[02]")
>>> print(apple_map)

additional_path_1 meta_attributes
->table->basket->0 ->apples->0 //color/red//hint/eat now//
->shelf->0 ->apples->2 //color/red//

The meta attribute of the path map leads to the selection via the meta attributes, which is invoked by the where method.

Note: The helper method wh_is (where is) combines both items to the correct search pattern for a where <key> is
<value> statement.

>>> yellow_fruits = mapped_tree.meta.where(wh_is("color", "yellow"))
>>> print(yellow_fruits)

additional_path_1 meta_attributes
->table->basket->2 ->bananas->0 //color/yellow//hint/eat now//
->table->basket->2->fruit //color/yellow//hint/eat now//
->table->basket->2->color //color/yellow//hint/eat now//
->shelf->1 ->bananas->1 //color/yellow//
->shelf->1->fruit //color/yellow//
->shelf->1->color //color/yellow//

Since the prior view shows every tree node/leaf related to the where selection the additional path view can reduce the
selection additionally, making it more human readable.

>>> yellow_fruits = mapped_tree[1].meta.where(wh_is("color", "yellow"))
>>> print(yellow_fruits)

additional_path_1 meta_attributes
->table->basket->2 ->bananas->0 //color/yellow//hint/eat now//
->shelf->1 ->bananas->1 //color/yellow//

8 Chapter 2. Installation

treepathmap, Release release = "0.2a2"

The where method used at the path map level requests arguments by groups of two which are path part-value pairs. It
searches for path with the path part and selects them, if the have an equal value.

>>> apples = mapped_tree.where("fruit", "apple")
>>> print(apples)

additional_path_1 meta_attributes
->table->basket->0->fruit //color/red//hint/eat now//
->table->basket->1->fruit //color/green//hint/eat now//
->shelf->0->fruit //color/red//

While the where method of tags (e.g. meta attributes) also allows single statements. In the current version select is
reserved for selection of tree node paths in which the order of the arguments is taken into account. where selections
doesn’t need to provide any order or rather the order is ignored.

>>> red_apples = apples.meta.where("red")
>>> print(red_apples)

additional_path_1 meta_attributes
->table->basket->0->fruit //color/red//hint/eat now//
->shelf->0->fruit //color/red//

2.1.3 Tagging

>>> fruits = mapped_tree["additional_path_1"]
>>> fruits.tags["tag_group"].tag({"foo": 1, "bar": "a"})
>>> print(fruits)

additional_path_1 ... tag_group
->table->basket->0 ->apples->0 ... //bar/a//foo/1//
->table->basket->1 ->apples->1 ... //bar/a//foo/1//
->table->basket->2 ->bananas->0 ... //bar/a//foo/1//
->shelf->0 ->apples->2 ... //bar/a//foo/1//
->shelf->1 ->bananas->1 ... //bar/a//foo/1//
->shelf->2 ->bananas->2 ... //bar/a//foo/1//

[6 rows x 3 columns]

2.1.4 Limitations

>>> map_tree("Something not being a collection of Sequence or Mapping.")
Traceback (most recent call last):
TypeError: Expected a Sequence or Mapping, got '<class 'str'>' instead.

>>> map_tree({})
Traceback (most recent call last):

MINIMUM_POSSIBLE_PATH_COUNT
ValueError: A path count lower than 1 is not supported.

>>> map_tree({"one": "item"})
->one

In the current scope treepathmap does not features tracking of added tree nodes to the origin collection. It’s main
purpose is to get selections and relations of many nested entries.

In this example a smaller tree will be used.

2.1. Basic Usage 9

treepathmap, Release release = "0.2a2"

>>> smaller_sample_tree = {
... "shelf": [
... {"fruit": "apple", "color": "red"},
... {"fruit": "banana", "color": "yellow"},
... {"fruit": "banana", "color": "brown"},
...],
... }
>>> smaller_sample_map = map_tree(
... smaller_sample_tree,
... modify_default_path_map_item=add_path_and_meta_attributes
...)
>>> fruits = smaller_sample_map[1]
>>> print(fruits)

additional_path_1 meta_attributes
->shelf->0 ->apples->3 //color/red//
->shelf->1 ->bananas->3 //color/yellow//
->shelf->2 ->bananas->4 //color/brown//

By using the tree_items attribute of treepathmap.PathMap you get access to the origin collections. Any changed
here are reflected within the origin, but not in the PathMap.

>>> yellow_fruits = smaller_sample_map[1].meta.where("color/yellow")
>>> print(yellow_fruits)

additional_path_1 meta_attributes
->shelf->1 ->bananas->3 //color/yellow//
>>> for fruit in yellow_fruits.tree_items:
... fruit["eatable"] = True
>>> from doctestprinter import doctest_print
>>> doctest_print(smaller_sample_tree, max_line_width=70)
{'shelf': [{'fruit': 'apple', 'color': 'red'}, {'fruit': 'banana', 'color':
'yellow', 'eatable': True}, {'fruit': 'banana', 'color': 'brown'}]}
>>> print(yellow_fruits)

additional_path_1 meta_attributes
->shelf->1 ->bananas->3 //color/yellow//

>>> fruits.tree_items[1:] = {"fruit": "banana", "color": "green", "eatable": False}
>>> fruits_reselected = fruits[1]
>>> print(fruits_reselected)

additional_path_1 meta_attributes
->shelf->0 ->apples->3 //color/red//
->shelf->1 ->bananas->3 //color/yellow//
->shelf->2 ->bananas->4 //color/brown//

>>> doctest_print(smaller_sample_tree, max_line_width=70)
{'shelf': [{'fruit': 'apple', 'color': 'red'}, {'fruit': 'banana', 'color':
'green', 'eatable': False}, {'fruit': 'banana', 'color': 'green', 'eatable':
False}]}

Remapping is necessary if the origin changed severly.

>>> smaller_sample_map = map_tree(
... smaller_sample_tree,
... modify_default_path_map_item=add_path_and_meta_attributes
...)
>>> print(smaller_sample_map)

additional_path_1 meta_attributes

(continues on next page)

10 Chapter 2. Installation

treepathmap, Release release = "0.2a2"

(continued from previous page)

->shelf ////
->shelf->0 ->apples->4 //color/red//
->shelf->0->fruit //color/red//
->shelf->0->color //color/red//
->shelf->1 ->bananas->5 //color/green//
->shelf->1->fruit //color/green//
->shelf->1->color //color/green//
->shelf->1->eatable //color/green//
->shelf->2 ->bananas->6 //color/green//
->shelf->2->fruit //color/green//
->shelf->2->color //color/green//
->shelf->2->eatable //color/green//

2.2 concept of treepathmap

The basic task of treepathmap is to create a map of nested collections and support selection of items via the path
(parts) or attached meta attributes.

nested_sample_data = {
"shelf": [

{"banana": {"color": "red", "weight": 123}},
{"banana": {"color": "blue", "weight": 113}},

],
"table": [

{"apple": {"color": "green", "weight": 80}},
{"banana": {"color": "green", "weight": 113}},
{"apple": {"color": "red", "weight": 81}},

]
}

sample_map = a_map_method(nested_sample_data)

selection of items
bananas = sample_map.select("banana")

read access to of attributes
banana_weights = bananas.select("weight")
total_weight_of_all_bananas = numpy.sum(banana_weights.to_list())
print("Total weight of bananas: {}g".format(total_weight_of_all_bananas))

write access of attributes
bananas.tree_items["color"] = "yellow"

pretty_print(nested_sample_data)

Total weight of bananas 349g.
{

'shelf': [
{'banana': {'color': 'yellow', 'weight': 123}},
{'banana': {'color': 'yellow', 'weight': 113}},

],
'table': [
{'apple': {'color': 'green', 'weight': 80}},
{'banana': {'color': 'yellow', 'weight': 113}},

(continues on next page)

2.2. concept of treepathmap 11

treepathmap, Release release = "0.2a2"

(continued from previous page)

{'apple': {'color': 'red', 'weight': 81}},
]

}

The PathMapItem points at a specific item within a collection. It attributes are

PathMapItem.parent_container -> Collection
The parent collection of the item, the PathMapItem points to.

PathMapItem.real_key -> Hashable
The index of a Sequence or hashable key of a Mapping of the item this PathMapItem points to.

PathMapItem.prime_value : Any
This is the value of the item

PathMapItem.real_path : str
The sequence of indexes and keys pointing at the item’s location within the nested root collection as a path-like
string.

PathMapItem.meta_attributes
Attributes associated with the item.

12 Chapter 2. Installation

treepathmap, Release release = "0.2a2"

2.3 API reference

treepathmap.map_tree(potential_tree[, . . .]) Maps a nested collection to a PathMap.
treepathmap.wh_is(attribute_name, value) Makes a ‘where is’ search pattern.

2.3.1 map_tree

treepathmap.map_tree(potential_tree: Union[Sequence, Mapping], parent_path_map_item: Op-
tional[treepathmap.selectables.TreeNodeItem] = None, item_is_a_leaf:
Optional[Callable[[Any], bool]] = None, modify_default_path_map_item:
Optional[Callable[[treepathmap.selectables.TreeNodeItem],
treepathmap.selectables.TreeNodeItem]] = None) →
treepathmap.maps.PathMap

Maps a nested collection to a PathMap.

Parameters

• potential_tree – The potential nested tree to be mapped.

• parent_path_map_item (Optional[TreeNodeItem]) – The path map item of
the parent container, the potential tree is located in. The default option None means the
potential tree is the root container.

• item_is_a_leaf (Optional[DetectATreeLeaf]) – The custom Callable
item_is_a_leaf defines if an item is a leaf or a node. By default treenodedefini-
tion.this_item_is_a_leaf is used.

• modify_default_path_map_item (Optional[Callable[[TreeNodeItem],
TreeNodeItem]]) – Defines a Callable, which enables an additional declaration of
tree paths and meta potential_tree of the default real path TreeNodeItem directly after its
creation.

Raises TypeError – if tree_item_to_map is not a Sequence or Mapping.

Returns PathMap

Examples

>>> from treepathmap.maps import map_tree
>>> sample_tree = {"1st": [["a set", "of"], ["items"]]}
>>> sample_map = map_tree(sample_tree)
>>> print(sample_map)

meta_attributes
->1st ////
->1st->0 ////
->1st->1 ////
>>> def add_path_and_meta_attributes(a_path_map_item):
... a_path_map_item.add_meta_attributes({"some": "metadata"})
... # don't give this additional path example to much credit.
... a_nonsense_path = 0
... the_value_of_this_item = a_path_map_item.prime_value
... for char in str(the_value_of_this_item):
... a_nonsense_path += ord(char)
... # the additional path is set to location 1, first place after
... # the real path generated by the default mapping method.

(continues on next page)

2.3. API reference 13

treepathmap, Release release = "0.2a2"

(continued from previous page)

... a_path_map_item.set_tree_path(1, a_nonsense_path)

... return a_path_map_item

...
>>> extended_path_map_items = map_tree_items(
... sample_tree,
... modify_default_path_map_item=add_path_and_meta_attributes
...)
...
>>> extended_path_map_items.print_full_items()
TreePath:

path-0: ->1st
path-1: ->2158
metadata: {'some': 'metadata'}
parent container type: dict

TreePath:
path-0: ->1st->0
path-1: ->1090
metadata: {'some': 'metadata'}
parent container type: list

TreePath:
path-0: ->1st->1
path-1: ->808
metadata: {'some': 'metadata'}
parent container type: list

2.3.2 wh_is

treepathmap.wh_is(attribute_name: str, value: Union[int, str])→ str
Makes a ‘where is’ search pattern. Using this method ensures the correct key-value delimiter within the search
pattern.

Parameters

• attribute_name (str) – The attribute of which the value is choosen.

• value (Union[int, str]) – The value of the attribute to choose.

Returns str

14 Chapter 2. Installation

treepathmap, Release release = "0.2a2"

Examples

>>> from treepathmap import wh_is
>>> wh_is("a", "b")
'a/b'

2.3.3 treepathmap.PathMap

treepathmap.PathMap(path_map_table, . . .) A map of a nested collection.

PathMap

class treepathmap.PathMap(path_map_table: Optional[treepathmap.maps.PathMapTable] =
None, selected_real_paths: Optional[pandas.core.indexes.base.Index]
= None, selection_path_name: Optional[str]
= None, path_mapping_behavior: Op-
tional[treepathmap.maps.APathMappingBehavior] = None)

A map of a nested collection.

Parameters

• path_map_table (Optional[PathMapTable]) – The table of all real paths and
path map items, which is the basis of each path map.

• selected_real_paths (Optional[pandas.Index]) – The selected real paths
(indexes) of this instance.

• selection_path_name (Optional[str]) – The name of the paths (real or addi-
tional paths) this path map points to.

• path_mapping_behavior (Optional[APathMappingBehavior]) – The map-
ping behavior of this path map, by which new items are mapped.

Examples

In this example the map is build from scratch instead using treepathmap.map_tree(), which is the
recommend way.

>>> from treepathmap import (
... TreeNodePaths,
... TreeNodeItem,
... TreeNodeItems,
... PathMapTable
...)

The nested sample collection is kept simple.

>>> sample_tree = {"a": {"b": {"d": "leaf-1"}, "c": {"e": "leaf-2"}}}

The tree node paths are pointing at items of the collection. Meta attributes are inherited, what is taken into
account here.

2.3. API reference 15

treepathmap, Release release = "0.2a2"

>>> tree_node_paths = [
... TreeNodePaths([["a"], ["x"]], {"k1": 1}),
... TreeNodePaths([["a", "b"], [""]], {"k1": 2, "k2": "n"}),
... TreeNodePaths([["a", "b", "d"], ["y"]], {"k1": 2, "k2": "m"}),
... TreeNodePaths([["a", "c"], [""]], {"k1": 3, "k2": "n"}),
... TreeNodePaths([["a", "c", "e"], ["y"]], {"k1": 3, "k2": "m"})
...]

The prior block is identical to the following one, which shows the joining method of TreeNodePaths.

>>> a_root_path = TreeNodePaths([RootNodePath()])
>>> path_1 = a_root_path.join([["a"], ["x"]], {"k1": 1})
>>> path_11 = path_1.join([["b"], [""]], {"k1": 2, "k2": "n"})
>>> path_111 = path_11.join([["d"], ["y"]], {"k2": "m"})
>>> path_21 = path_1.join([["c"], [""]], {"k1": 3, "k2": "n"})
>>> path_211 = path_21.join([["e"], ["y"]], {"k2": "m"})
>>> tree_node_paths = [path_1, path_11, path_111, path_21, path_211]

The tree node items resembles the core of the PathMapTable, which is the basis of the final PathMap. Using
treepathmap.map_tree() is the recommended way to get a PathMap.

>>> sample_node_items = TreeNodeItems(
... TreeNodeItem(tree_node_paths[0], sample_tree),
... TreeNodeItem(tree_node_paths[1], sample_tree["a"]),
... TreeNodeItem(tree_node_paths[2], sample_tree["a"]["b"]),
... TreeNodeItem(tree_node_paths[3], sample_tree["a"]),
... TreeNodeItem(tree_node_paths[4], sample_tree["a"]["c"]),
...)
...
>>> sample_table = PathMapTable(tree_node_items=sample_node_items)
>>> sample_map = PathMap(sample_table)
>>> print(sample_map)

additional_path_1 meta_attributes
->a ->x //k1/1//
->a->b //k1/2//k2/n//
->a->b->d ->y //k1/2//k2/m//
->a->c //k1/3//k2/n//
->a->c->e ->y //k1/3//k2/m//

The choosen path column defines the active tree nodes. The default column are the real paths. In this example
the additional paths has one blank path, which is removed from the view.

>>> sample_map = PathMap(sample_table)
>>> sample_map.real_paths
Index(['->a', '->a->b', '->a->b->d', '->a->c', '->a->c->e'], dtype='object')
>>> other_view = sample_map[1]
>>> other_view.real_paths
Index(['->a', '->a->b->d', '->a->c->e'], dtype='object')

The choosen paths define the selection and iteration behavior of the path map. In the following case the paths
‘->a->b’ and ‘->a->c’ are omitted, due to a blank path in the additional paths.

>>> rows = {
... real_path: row.to_list()
... for real_path, row in other_view.iter_rows()
... }
...

(continues on next page)

16 Chapter 2. Installation

treepathmap, Release release = "0.2a2"

(continued from previous page)

>>> from dicthandling import print_tree
>>> print_tree(rows)
->a: ['->a', '->x']
->a->b->d: ['->a->b->d', '->y']
->a->c->e: ['->a->c->e', '->y']
>>> selected_map = other_view.select("y")
>>> print(selected_map)

additional_path_1 meta_attributes
->a->b->d ->y //k1/2//k2/m//
->a->c->e ->y //k1/3//k2/m//

Since the additional paths are active only ‘->a->c->e’ should be selected using the where statement, although
‘->a->c’ also is tagged with {k1: 3}.

>>> reduced_map = selected_map.meta.where(wh_is("k1", "3"))
>>> print(reduced_map)

additional_path_1 meta_attributes
->a->c->e ->y //k1/3//k2/m//
>>> reduced_map.select("->a->b->d")
<empty map>
>>> reduced_map.real_path_exists("->not->existing")
False
>>> reduced_map.real_path_exists("->a->b")
False
>>> reduced_map.real_path_exists("->a->c->e")
True

>>> for item in reduced_map.tree_node_items:
... print(item)
TreeNodeItem(->a->c->e: in a dict)

>>> list(reduced_map.tree_items)
['leaf-2']

The reduced map is switched back to the real paths. Selections from the reduced map should not exceed the
current selection.

>>> reduced_map = reduced_map["real_path"]
>>> reduced_map.selected_indexes
Index(['->a->c->e'], dtype='object')
>>> reduced_map.select("a", "*")
->a->c->e

additional_path_1: ->y
meta attributes: {'k1': 3, 'k2': 'm'}

By default the first tag group are the meta_attributes, which are an instance of treepathmap.
IrregularTags. The tags attribute of the path map gives access to all tag groups. In this example all
items with the meta attributes k2 being m are selected. The new tag group ‘ids’ is assigned, which can be
selected by this tags from the whole map afterwards.

>>> items_with_k2_is_m = sample_map.tags["meta_attributes"].where("k2/m")
>>> items_with_k2_is_m.tags["ids"].tag({"category": "foo", "name": "bar"})
>>> items_with_k2_is_m.tags["ids"]

category name ids
->a->b->d foo bar //category/foo//name/bar//

(continues on next page)

2.3. API reference 17

treepathmap, Release release = "0.2a2"

(continued from previous page)

->a->c->e foo bar //category/foo//name/bar//
>>> sample_map.tags["ids"].where("category/foo")
->a->b->d

additional_path_1: ->y
meta attributes: {'k1': 2, 'k2': 'm'}

->a->c->e
additional_path_1: ->y
meta attributes: {'k1': 3, 'k2': 'm'}

Properties

treepathmap.PathMap.meta

treepathmap.PathMap.tags

treepathmap.PathMap.real_paths

treepathmap.PathMap.
selection_path_name

States the current name of the paths from which the item
selection via select is performed.

treepathmap.PathMap.tree_node_items

treepathmap.PathMap.tree_items

meta

PathMap.meta

tags

PathMap.tags

real_paths

PathMap.real_paths

selection_path_name

PathMap.selection_path_name
States the current name of the paths from which the item selection via select is performed.

Returns str

18 Chapter 2. Installation

treepathmap, Release release = "0.2a2"

tree_node_items

PathMap.tree_node_items

tree_items

PathMap.tree_items

Methods

treepathmap.PathMap.is_empty()

treepathmap.PathMap.
from_selection([. . .])

is_empty

treepathmap.PathMap.is_empty(self)

from_selection

treepathmap.PathMap.from_selection(self, selected_real_paths: Op-
tional[pandas.core.indexes.base.Index] = None, se-
lection_path_name: Optional[str] = None)

Related to real paths (indexes)

treepathmap.PathMap.
get_sub_paths_of_real_path(. . .)
treepathmap.PathMap.
real_path_exists(real_path)
treepathmap.PathMap.get_indexes()

treepathmap.PathMap.selected_indexes

2.3. API reference 19

treepathmap, Release release = "0.2a2"

get_sub_paths_of_real_path

treepathmap.PathMap.get_sub_paths_of_real_path(self, parent_real_path: str)→ List[str]

real_path_exists

treepathmap.PathMap.real_path_exists(self, real_path: str)→ bool

get_indexes

treepathmap.PathMap.get_indexes(self)→ pandas.core.indexes.base.Index

selected_indexes

PathMap.selected_indexes

Selecting

treepathmap.PathMap.select(*search_parts) Selects tree items on base of the supplied
w*search_parts*, which are parts of the aug-
mented_paths within the tree.

treepathmap.PathMap.
where(*where_search_parts) param *search_parts Tree path parts

which are parts of the requested tree
items

select

treepathmap.PathMap.select(self, *search_parts)→ treepathmap.maps.PathMap
Selects tree items on base of the supplied w*search_parts*, which are parts of the augmented_paths within the
tree. All parts are considered with an and condition in between them. Multiple parts within a part are considered
with an or condition in between.

Examples

select(“this”, “and_that”, [“this”, “or_this”, “or_that”])

Parameters *search_parts – Tree path parts which are parts of the requested tree items paths.

Returns Selection of augmented tree items.

Return type PathMapSelection

20 Chapter 2. Installation

treepathmap, Release release = "0.2a2"

where

treepathmap.PathMap.where(self, *where_search_parts)→ treepathmap.maps.PathMap

Parameters *search_parts – Tree path parts which are parts of the requested tree items paths.

Returns Selection of augmented tree items.

Return type PathMapSelection

Path map items

treepathmap.PathMap.
get_path_map_item_by_real_path(. . .)

Retrieves the tree node item of a requested real path.

treepathmap.PathMap.iter_rows()

get_path_map_item_by_real_path

treepathmap.PathMap.get_path_map_item_by_real_path(self, real_path: str) →
treepathmap.selectables.TreeNodeItem

Retrieves the tree node item of a requested real path.

Parameters real_path (str) – real path of the requested tree item.

Returns TreeNodeItem

iter_rows

treepathmap.PathMap.iter_rows(self) → Generator[Tuple[str, pandas.core.series.Series], None,
None]

2.3. API reference 21

treepathmap, Release release = "0.2a2"

22 Chapter 2. Installation

PYTHON MODULE INDEX

t
treepathmap, 12

23

treepathmap, Release release = "0.2a2"

24 Python Module Index

INDEX

F
from_selection() (in module

treepathmap.PathMap), 19

G
get_indexes() (in module treepathmap.PathMap),

20
get_path_map_item_by_real_path() (in mod-

ule treepathmap.PathMap), 21
get_sub_paths_of_real_path() (in module

treepathmap.PathMap), 20

I
is_empty() (in module treepathmap.PathMap), 19
iter_rows() (in module treepathmap.PathMap), 21

M
map_tree() (in module treepathmap), 13
meta (treepathmap.PathMap attribute), 18
meta_attributes (treepathmap.PathMapItem

attribute), 12
module

treepathmap, 12

P
PathMap (class in treepathmap), 15

R
real_path_exists() (in module

treepathmap.PathMap), 20
real_paths (treepathmap.PathMap attribute), 18

S
select() (in module treepathmap.PathMap), 20
selected_indexes (treepathmap.PathMap at-

tribute), 20
selection_path_name (treepathmap.PathMap at-

tribute), 18

T
tags (treepathmap.PathMap attribute), 18

tree_items (treepathmap.PathMap attribute), 19
tree_node_items (treepathmap.PathMap attribute),

19
treepathmap

module, 12

W
wh_is() (in module treepathmap), 14
where() (in module treepathmap.PathMap), 21

25

	Introduction
	Installation
	Basic Usage
	Important
	Examples
	Tagging
	Limitations

	concept of treepathmap
	API reference
	map_tree
	wh_is
	treepathmap.PathMap

	Python Module Index
	Index

